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Figure 1: An orientation-driven shape optimization approach is presented in this paper to show how a given model can be deformed

so that the usage of the support structure is significantly reduced in AM with a single material. Layered fabrication based on the

FDM method (middle left) and on the SLA method (middle right) can both benefit from this work to improve the efficiency of the

manufacturing and the quality of the finished models.

Abstract

In layer-based additive manufacturing (AM), supporting structures need to be inserted to support the overhanging regions. The

adding of supporting structures slows down the speed of fabrication and introduces artifacts onto the finished surface. We present

an orientation-driven shape optimizer to slim down the supporting structures used in single material-based AM. The optimizer can

be employed as a tool to help designers to optimize the original model to achieve a more self-supported shape, which can be used

as a reference for their further design. The model to be optimized is first enclosed in a volumetric mesh, which is employed as the

domain of computation. The optimizer is driven by the operations of reorientation taken on tetrahedra with ‘facing-down’ surface

facets. We formulate the demand on minimizing shape variation as global rigidity energy. The local optimization problem for

determining a minimal rotation is analyzed on the Gauss sphere, which leads to a closed-form solution. Moreover, we also extend

our approach to create the functions of controlling the deformation and searching for optimal printing directions.
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1. Introduction

AM has emerged as one of the most important methods for

realizing the fast fabrication of freeform solids. Stereolithogra-

phy Apparatus (SLA) and Fused Deposition Modeling (FDM)

are two widely used approaches in AM because they achieve

a very good balance between the cost and the quality. Both

SLA and FDM fabricate models in a layer-by-layer manner,

where supporting structures (also simply called support) need

to be added during the manufacturing process. Specifically, the

manufacturing material cannot be deposited on a layer where

there is insufficient material on the previous layer. For exam-

ple, the overhangs with a large hanging area can easily collapse

under gravity. The problem is solved by adding supports to

the originally designed models (Fig.1). Recent developments

in AM allow us to generate the supporting structures automati-

cally (e.g., [1, 2]).

1.1. Problems Caused by Support

When the support is fabricated by a dissolvable material

which is different from the one used to print the designed

model, the support can be removed automatically by a post-

process (ref. [4]). However, for those manufacturing techniques

with a single material (e.g., SLA and the low-cost FDM ma-

chines), the supporting structure poses many problems to users.

Firstly, the volume of the support could be large compared to

the designed model, which leads to a significant waste of ma-

terials, energy and time - our study shows that up to 63.6% of

the manufacturing time in FDM could be spent on the fabrica-

tion of the support. Although the increase of fabrication time in

the Mask-Image Projection based Stereolithography Apparatus

(MIP-SLA) [5] is not significant, because it is proportional only

to the number of layers, another problem caused by the supports

in single-material AM is common. This is the difficulty in re-

moving the supports automatically. When the support is fabri-

cated in the same material as the design model, it is linked to the

model by many thin columns. After fabrication, the support is

separated from the main object by being torn away at the top of

the columns. This step is always performed manually. More se-

riously, the surface of the main object is easily damaged by the

visual artifacts which are left on its surface (see Figure 22 for

an example). Note that although the process of drop-on-powder
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Figure 2: Artifacts are left on the surface of finished models

after removing the support structures – the photograph is of

a model fabricated by MIP-SLA. Examples of single-material

FDM can be found in [3].

based AM and Selective Laser Sintering (SLS) is self-supported

by the powders, a large group of machines using FDM and SLA

suffer from the problem of support.

1.2. Tool for Design Pipeline - Motivation of This Work

In the literature of design-for-manufacturing, many appli-

cations allow the shape of a model be adjusted before fi-

nalizing the design so that a better manufacturability can be

achieved. After designing a shape with the help of modern ge-

ometric modeling techniques, designers start to take the ‘self-

supportness’ into consideration when they wish to fabricate the

physical model by single-material AM. In many cases, design-

ers manually change the shape of a design and then verify the

self-supportness by applying the support generation tools. Such

a trial-and-error process is tedious and can take up much time

and effort. Little research attention has been paid in the litera-

ture to the automation of this procedure. In this work, we pro-

vide a support slimming optimizer in the design pipeline to help

designers to generate better self-supported intermediate models

as references for finalizing their designs. A new design pipeline

after integrating our shape optimizer is shown in Fig.3.

1.3. Main Results

We propose a novel shape optimization approach to optimize

the shape of a designed modelM into a ‘self-supported’ state

for AM (see Fig.1). The optimizer is formulated on a volumet-

ric mesh T enclosing M (Section 3.1). The global shape of

M is preserved by minimizing the energy of rigidity defined on

T (Section 3.2). The benefit of taking the computation on T

is twofold. Firstly, the computation is more efficient and eas-

ier to converge when the mesh density of T is coarser thanM.

Secondly, geometric details onM can be preserved during the

Figure 3: Our supporting slimming optimizer (the stage shown

in yellow) can be incorporated into the common design pipeline

as a tool. This flowchart shows how to use our optimizer in

AM-based model design.

optimization. The procedure of optimization is driven by reori-

enting the tetrahedra with ‘facing-down’ surface facets. Being

a major technical contribution of this work, a closed-form so-

lution is derived from the analysis on the Gauss sphere to de-

termine the minimal rotations (Section 4). This work provides

a tool (with error control) for manipulating the shape of a de-

signed model to reduce the usage of supporting structures. Our

optimizer can be integrated into the design pipeline to relieve

the designers from carrying out tedious work (Fig.3). To the

best of our knowledge, this paper is the first one which tack-

les the shape optimization problem so as to reduce the usage of

supporting structures in AM.

2. Related Works

Shape and topology optimization techniques have been

widely employed in a variety of engineering applications

(ref. [6, 7]). Recently, these techniques have been used in AM

applications. For instance, the issue of a model balance for

AM has been tackled by Prévost et al.[8] by carving and shape

deformation. This approach is followed by a work in [9] to op-

timize the moment of inertia for designing a spinnable object.

Telea and Jalba [10] investigated the printability of a model by

voxel representation, where regions, bridges, spike and holes

which are too thin can be automatically detected. A physi-

cally based stress-relief algorithm has been presented in [11]

to automatically detect and modify the areas with high stress

by hollowing, thickening and inserting struts to reinforce the

strength of the models. Wang et al. [12] tried to generate a

skin-frame structure to minimize the volume of manufacturing

2



material and the number of struts. Zhou et al. [13] have devel-

oped a method for determining the worst-load distribution for a

shape that will cause high local stress or large deformations so

that the shape can be enhanced at those weak regions. Umetani

and Schmidt [14] have proposed a method to determine an op-

timal printing direction to maximize the mechanical strength of

a model fabricated by AM. Lu et al. recently solved a strength-

to-weight problem in [15] to relieve the interior stress inside a

printed model by introducing optimal honeycomb-cells struc-

tures. Although many optimization issues relating to AM have

been investigated, how to optimize the shape to reduce the sup-

porting structures is still an open problem which needs to be

studied.

The determination of the parting direction for a mold is a

typical orientation optimization problem, and it is one that has

been studied for decades. Chen [16] presented an algorithm

to determine the parting direction by finding the minimum

volume bounding box through fuzzy representation selection.

Priyadarshi and Gupta proposed an algorithm in [17] to find

the feasible parting directions through the visibility of facets by

graphics hardware acceleration. The graphics accelerated hard-

ware was also employed in [18] to help speed up the search of

the feasible mold parting directions. Li et al. proposed a part-

ing line generation algorithm for mesh models in [19]. All these

approaches can be regarded as ‘rigid’ orientation optimization

techniques that do not change the shape of the models. Our

work deforms both the shape and the pose of an input model to

slim down its supporting structure for single-material AM.

In the literature, many geometric modeling and processing

problems are formulated under the framework of optimization.

A good survey can be found in the book by Botsch et al. [20].

Because the shape optimization taken in this paper is based on

a local/global deformation strategy, we review only the related

techniques below. Some recent approaches solve the deforma-

tion problem based on the as-rigid-as-possible (ARAP) con-

sideration [21, 22], where they preserve the rigidity of every

element in the local step and then globally blend the elements

together by solving a least-square problem. The position con-

straints of handles can be enforced by fixing the correspond-

ing variables in the global step. The local/global optimization

is also employed in [23] for solving the mesh parameteriza-

tion problem. Recently, Kwok and Wang [24] presented an

optimization framework for the design automation of human-

centric products by solving a mixed-integer ARAP optimiza-

tion problem. The procedure of local/global ARAP deforma-

tion employed in this paper is driven by a novel reorientation

scheme to solve the problem of support slimming.

3. Optimization by Deformation

The mission of our optimizer is to deform the input model

M to a shape M′ by which the supporting structures are re-

duced and local details are preserved. To achieve this goal, a

volumetric mesh T is employed as the computation domain so

that the geometry details can be preserved. The demands placed

on the slimming down supports are formulated as reducing the

Figure 4: Flowchart of our shape optimization algorithm.

‘facing-down’ surface facets on T while minimizing its defor-

mation (see the flowchart shown in Fig.4).

3.1. Computation Domain and Notations

To preserve the geometry details on the given modelM, we

constructed a tetrahedral mesh T enclosing M as the compu-

tation domain. Every vertex on M is encoded with the posi-

tions of the tetrahedral vertices on T by the barycentric coor-

dinate. As a result, when T is deformed into a new shape, a

deformed shape of M (i.e., M′) can be obtained by applying

the barycentric coordinate. When the volumetric mesh T is

coarser than M, the geometry details on M can be preserved

in the deformation. There are many methods described in the

literature for generating a surface mesh to enclose an input sur-

face mesh (e.g., [25, 26]). After that, the tetrahedral mesh T

can be generated from the enclosing surface mesh [27].

For a tetrahedral mesh CT = (V;E;F ;T ), V = {vi},

E = {ei j}, F = { fi jk}, T = {ti jkl} are used to denote the sets

of vertices, edges, facets and tetrahedrals, respectively. vi ∈ ℜ
3

gives the position of each vertex vi, and n̂ j denotes the normal

of a face f j. The faces that are located at the boundary of T are

called surface faces, and the tetrahedra that have at least one

surface face are named as surface tetrahedra. The sets of sur-

face faces and tetrahedra are represented by F s and T s. More-

over, all values from the original model are represented with a

superscript ‘o’, and those computed from the current status are

denoted with a superscript ‘c’.

Figure 5: Faces are classified

according to the printing direc-

tion.

Printing Direction: It

is the fabrication direction

along which the model is

printed layer by layer - de-

noted by d̂p. Without the

loss of generality, in the

rest of this paper we as-

sume that d̂p is a unit vec-

tor.

Maximal Self-Supported

Angle: An overhanging re-

gion that can be printed

without adding support is

called self-supported. The

angle between the region’s

tangent plane and the print-
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ing direction is called the self-supported angle α. When dif-

ferent manufacturing materials are used, the AM processes are

equipped with different maximal self-supported angles. We de-

fine a self-supporting coefficient τ in our formulation in ac-

cordance with the maximal self-supported angle αmax as τ =

sin(αmax).

Fixed Region: During the shape optimization, a region of the

model is selected to be fixed to serve as the boundary conditions

(see the yellow region in Fig.5 as an example). Tetrahedral ver-

tices (both the boundary and the interior ones) in this region are

fixed. Users are free to define the parts to be fixed in our ap-

proach. Usually, the bottom of a model is selected as the fixed

region.

Safe Face: The surface face on CT whose normal n̂ satisfies

n̂ · d̂p ≥ −τ. (1)

See the green faces in Figure 55 for an example. These faces

are termed the self-supported faces, and the above inequality on

the normals of faces is termed the self-supporting condition.

Risky Face: The surface face with n̂ · d̂p < −τ. For example,

the orange regions in Figure 55 are formed by risky faces.

Note that a surface tetrahedron containing no risky face is called

a safe tetrahedron. On the other aspect, if one of the surface

tetrahedron’s faces is risky, the tetrahedron is also defined as a

risky tetrahedron.

3.2. Optimization Framework

The goal of slimming down the support in AM can be inter-

preted as deforming the given model into a new shape so that it

has fewer risky faces. Because the volumetric mesh CT is used

as the domain of computation, we convert the problem into the

requirement of turning risky faces into safe ones while mini-

mizing the deformation.

Deformation Energy: For each tetrahedron t ∈ T with four

vertices v1, v2, v3 and v4, we construct a local frame in t as

Vt = [v1 − v4 v2 − v4 v3 − v4] (2)

with v4 being an interior vertex on the volumetric mesh. This

selection of local origin is based on the heuristic that an interior

vertex is connected with more tetrahedra. Making it static (as

origin) in a local rotation will have less influence on the neigh-

boring tetrahedra. With the help of Vt, the as-rigid-as-possible

(ARAP) energy of a deformed tetrahedral mesh can be defined

as

E(Cnew
T ,C

o
T ) =

∑

t∈T

wt‖V
new
t − LtV

o
t ‖

2
F , (3)

where ‖· ‖F is the Frobenius norm, Lt is a rigid transformation

matrix of the tetrahedron t, and wt is t’s volume serves as the

weight. In the prior work of ARAP deformation, position han-

dles are applied to move some vertices so that an updated shape

can be obtained by minimizing the above ARAP energy. The

optimization is actually in a least-square form when Lts are the

constant matrices determined in the local step. Here, we formu-

late the ARAP energy as Eq.(3) instead of
∑

wt‖LtV
new
t −Vo

t ‖
2
F

.

As a result, the factorization of a linear system can be reused in

the subsequent iterations of optimization.

Rigid Transformation: The local step for obtaining Lt plays a

very important role in our formulation.

• In the prior ARAP work, the rigid transformation from the

original shape Vo
t of a tetrahedron t to its current shape Vc

t

is determined by using a “signed version” of the singular

value decomposition (SVD) on the affine transformation

matrix Q = Vc
t (Vo

t )−1 (ref. [22]). That is, Q = UΣWT ,

where Σ is a diagonal matrix with all elements being pos-

itive. Σ defines the scaling factors in three orthogonal di-

rections in Q. As a result, Q can be turned into a rigid

transformation M = UWT .

• Applying M to a tetrahedron t will transform it to an orien-

tation that best approximates to the current shape of t. A

transformed surface tetrahedron may contain some risky

faces, and these need to be turned into safe ones by apply-

ing an additional rotation R. Basically, an ideal rotation

turns all risky faces on a tetrahedron into safe ones while

conducting a rotation with a minimal rotational angle. The

method for solving this problem will be presented in Sec-

tion 4. Specifically, after determining a minimal rotation

angle θ and its corresponding rotation axis r̂, R(r̂, θ) can

be obtained [28]. For those safe tetrahedra and the interior

tetrahedra, R(r̂, θ) = I.

The rigid transformation applied in our optimization framework

(i.e., Eq.(3)) is a cascade of these two transformations because

Lt = R(r̂, θ)M.

Procedure of Optimization: We iteratively apply the local and

then the global steps on the volumetric mesh CT to reduce the

number of risky faces.

• Step 1): For each tetrahedron, the rigid transformation

M between its current position/shape and the given posi-

tion/shape is computed.

• Step 2): For each risky tetrahedron, a minimal rotation

R(r̂, θ) is computed to convert it into a safe one (see Sec-

tion 4 below). As a result, Lt is obtained for all tetrahedra.

• Step 3): A least-square solution for the new position/shape

of the volumetric mesh is obtained by minimizing the de-

formation energy (Eq.(3)).

• Step 4): Go back to step 1) until the terminal condition is

reached.

A hybrid terminal condition is employed in the iteration: (a) the

maximal iteration steps (e.g., 100 in our implementation) and

(b) the number of risky faces do not decrease in the successive

five steps of the iteration. More sophisticated terminal condi-

tions will be introduced in Section 5.2 to control the geometry

approximation error on the optimized (deformed) model.
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Figure 6: Rotation analysis on the Gauss sphere to enforce the

condition of self-supporting: (a) a rotation to move n̂1 and n̂2

into the feasible regionHp (in cyan) w.r.t. the printing direction

d̂p, and (b) dual-feasible-regions of n̂1 and n̂2, Hn̂1
and Hn̂2

,

forms a target region as Ht = Hn̂1
∩ Hn̂2

to inversely rotate d̂p

into.

4. Computation of Minimal Rotation

Served as the core of our shape optimization approach, the

computation of minimal rotation is formulated in a closed-form

in this section.

Problem Definition: Given a tetrahedron t ∈ T s with four

faces { fi} (i = 1, . . . , 4) and their corresponding normals as {n̂i},

the minimal rotation is define as

arg minr̂,θ ‖R(r̂, θ) − I‖2g
s.t., ∀ fi ∈ F

s, (R(r̂, θ)n̂i) · d̂p ≥ −τ
(4)

where ‖ · ‖g is a general matrix norm to measure how signifi-

cantly R(r̂, θ) deviates from I.

Directly solving this problem by constrained nonlinear opti-

mization is tedious and time-consuming. The problem is a pure

rotation issue. Therefore, we analyze it on the Gauss sphere to

find a compact solution.

4.1. Analysis on Gauss Sphere

For a risky tetrahedron in R3, the unit normal vectors of its

four faces can be considered as four points on the Gauss sphere

S2. Meanwhile, the unit vector d̂p of the printing direction is

also mapped to a point on S2. Without a loss of generality,

d̂p is assumed to be the top point of the Gauss sphere (i.e.,

d̂p = (0, 0, 1)). Now the condition of self-supporting for a sur-

face face (Eq.1) can be interpreted as that the normal n̂ must

be located at the half-space Hp above/on the plane z = −τ.

As illustrated in Fig.6(a), a risky tetrahedron may have a few

surface faces that are not self-supported. When this situation

occurs, we can apply a rotation on the normal vectors to move

them into the safe region (i.e., insideHp). The rotation is actu-

ally R(r̂, θ) used in Eq.(4), where a minimal rotation angle θ is

demanded.

When there is more than one risky face on a tetrahedron, de-

termining a minimal rotation to move all points (corresponding

to the normals on risky faces) into the feasible regionHp is not

straightforward – see Fig.6(a). To solve this problem, a dual

representation ofHp is defined as follows.

Figure 7: Case I – there is only one surface face on a risky

tetrahedron.

Figure 8: Case II – there are two surface faces on a risky tetra-

hedron. The Gauss sphere is decomposed into five regions cor-

responding to the five different configurations of minimal rota-

tion.

Dual-Feasible-Region (DFR): The self-supporting condition

for a surface face with normal n̂ (i.e., Eq.(1)) can be considered

as requesting d̂p to be located at the same side of n̂ with refer-

ence to the plane: xn̂x + yn̂y + zn̂z + τ = 0. Therefore, a DFR of

d̂p for n̂ can be defined by the half-space

Hn̂ = {p | ∀p ∈ S2,p · n̂ + τ ≥ 0}. (5)

Thus, the self-supporting condition becomes d̂p ∈ Hn̂.

Inverse Rotation: Rotating n̂ by θ around the axis r̂ is equiva-

lent to inversely rotating d̂p with the angle (−θ) around the same

axis. As a result, the minimal angle can be determined by rotat-

ing d̂p into the DFR of n̂. Specifically, for a surface tetrahedron

t with m surface faces (m > 1), we can inversely rotating d̂p

into the common area defined by the DFRs of these faces – that

isHt = Hn̂1
∩ · · · ∩ Hn̂m

(see Fig.6(b)).

Methods for determining the minimal angle (by inverse ro-

tation) in different configurations are presented below. Cases

of tetrahedra with one and two surface faces are discussed. We

found only a very few cases with three surface faces in our tests.

For such cases, the configuration space on the Gauss sphere is

divided into eight regions. This makes the closed-form formu-

lation of minimal rotation very tedious. To have an easy-to-

implement approach, a tetrahedron t with more than two surface

faces is split into four tetrahedra by inserting a new vertex at the

middle of t, and this will not affect t’s neighboring tetrahedra.
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Figure 9: When d̂p falls in different regions, it has different

targets for the minimal rotation: (a)-(d) the configurations for

regions I-IV, respectively.

4.2. Case I: One Surface Face

For the case of a tetrahedron t with only one surface face f

whose normal is n̂, if the self-supporting condition (Eq.(1)) is

not satisfied on f , the point d̂p must fall outside the feasible

region Hn̂. The minimal inverse rotation that moves d̂p back

into Hn̂ can be determined by projecting d̂p onto the plane of

Hn̂ and then normalizing it to the unit vector d̂′p. Here d̂′p is the

closest point to d̂p in Hn̂. Thus, the minimal rotation axis is

r = d̂′p × d̂p and the rotation angle θ = arccos(d̂p · d̂
′
p).

4.3. Case II: Two Surface Faces

For the case that a tetrahedron t has two surface faces f1 and

f2 (with n̂1 and n̂2 as their normals respectively), we present a

closed-form solution of the minimal rotation below. Again, the

analysis is performed with the help of the DFRs and the inverse

rotation. Specifically, the Gauss sphere is decomposed into five

regions with respect to Hn̂1
and Hn̂2

, where different regions

lead to different configurations of minimal rotation. The yellow

part is the feasible region Ht. The boundaries of the configu-

ration regions are formed by five planes (see the illustration in

Fig.8). Two planes, P⊥n̂1
and P⊥n̂2

passing through the corner

points ofHt are perpendicular to Pn̂1
and Pn̂2

respectively. The

plane PAC passing through the origin is perpendicular to the

vector ĉa, which splits the region into two halves. Equations of

the five planes help to define five half-spaces, as follows:

Hn̂1
= {p | ∀p ∈ S2, n̂1 · p + τ ≥ 0}

Hn̂2
= {p | ∀p ∈ S2, n̂2 · p + τ ≥ 0}

HAC = {p | ∀p ∈ S2, ĉa · p ≥ 0}

H⊥n̂1
= {p | ∀p ∈ S2, (ĉa × n̂1) · p + d ≥ 0}

H⊥n̂2
= {p | ∀p ∈ S2, (n̂2 × ĉa) · p + d ≥ 0}

(6)

where ĉa = (n̂1× n̂2)/‖n̂1 × n̂2‖ and d = τ‖n̂1× n̂2‖/(1+ n̂1 · n̂2).

Configuration I: When d̂p ∈ Hn̂1
∩H⊥n̂1

, the minimal inverse

rotation moves d̂p onto the arc ÂDC (see the blue region in

Fig.9(a)). Here, H denotes a complementary set of H . To

realize that, we project d̂p onto the plane Pn̂1
and normalize it

to a unit vector d̂′p. As a result, the rotation axis for turning risky

faces safe is r = d̂′p×d̂p with the angle θ = arccos(d̂′p ·d̂p). Note

that, in all the configurations below, r and θ can be determined

in the same way after obtaining d̂′p.

Configuration II: This configuration occurs when d̂p ∈ Hn̂2
∩

H⊥n̂2
(i.e., falling in the green region shown in Fig.9(b)). We

then project d̂p onto the plane Pn̂2
and normalize it to d̂′p, which

actually moves d̂p onto the arc ÂBC.

Configuration III: The respective region of this configuration

is HAC ∩ H⊥n̂1
∩ H⊥n̂2

(the red region shown in Fig.9(c)). If

d̂p falls in this configuration, the closest point in the feasible

regionHt is the point A. The position of A can be computed by

the planes. We then assign the position of A to d̂′p.

Configuration IV: This is d̂p ∈ HAC ∩ H⊥n̂1
∩ H⊥n̂2

(the pur-

ple region in Fig.9(d)). InHt, the closest point to d̂p is point C.

Thus, its position is assigned as d̂′p to compute the minimal rota-

tion along the axis r = d̂′p×d̂p with the angle θ = arccos(d̂′p ·d̂p).

By the configuration analysis above, we solve the problem

of minimal rotation in a closed-form instead of non-linear opti-

mization. Meanwhile, the global step is a pre-factorized least-

square problem. As a result, each iteration of the optimization

procedure can be evaluated very efficiently.

5. Results and Discussion

The approach proposed in this paper has been implemented

by C++ together with the Eigen library [29] as the numerical

solver. All the tests below are taken on an Intel Core i7-3770

3.40GHz computer with 8GB RAM. Our current implementa-

tion does not use the multi-core acceleration. The approach has

been tested with several models, and all the results are encour-

aging.

5.1. Experimental Results

Our first example is the Dino model which was shown in

Fig.1. In this optimization, we set the maximal self-supported

angle αmax = 0. As a result of shape optimization, the Dino

‘raises up’ its head and arms. Local details of the bone struc-

tures are well-preserved. The original and the optimized mod-

els have been tested on two different types of AM machines –

the MIP-SLA and the Fortus 360mc FDM – where the support-

ing structures for MIP-SLA are generated by the region sub-

traction method [2] and the support for FDM is generated by

the software delivered together with the Fortus machine. The

second example is the Armadillo model. Figure 10 shows the

result of shape optimization on this example, where Armadillo

‘raises up’ its arms and ‘pulls down’ its tail. Quantitative mea-

surements of these two examples are given in Table 1 for the

purpose of comparison.

In both MIP-SLA and FDM, the material usage for the sup-

port has been greatly reduced. Because the fabrication time
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Figure 11: Examples of support slimming on more models: Dinosaurus (top), Bunny (middle) and Pig (bottom). The supporting

structure can be effectively reduced by applying our shape optimization approach to all of these models.

Table 1: Comparison of Fabrication Cost

Material Usage† Layer Fab‡

Printer Main Support Num Time

Dino – Fig.1

Input MIP-SLA 11.2 g 3.2 g 717 127 m

Optm MIP-SLA 10.9 g 0.5 g 865 153 m

Input FDM 1.30 in3 2.12 in3 408 428 m

Optm FDM 1.21 in3 1.07 in3 491 281 m

Armadillo – Fig.10

Input MIP-SLA 26.4 g 2.9 g 692 117 m

Optm MIP-SLA 25.6 g 0.2 g 785 133 m

Input FDM 1.47 in3 2.57 in3 389 483 m

Optm FDM 1.38 in3 1.23 in3 440 322 m

†The material used in MIP-SLA is measured by the weight of resin

and in FDM is measured by the volume of filaments.
‡The time of fabrication is reported in the unit of minutes.

Table 2: Statistics of Computational Performance

Volumetric Mesh

Model Fig. Ver. # Tet. # αmax Time∗

Dino 1 974 3,299 0◦ 4.151 s

Armadillo 10 2,373 8,189 0◦ 10.717 s

Dinosaurus 11 4,345 16,803 10◦ 22.525 s

Bunny 11 439 1,536 0◦ 1.899 s

Pig 11 1,046 4,045 10◦ 5.133 s

∗The time reported in this column is the total time of 100 iterations in

the unit of seconds. We assume different materials are used in the

fabrication – therefore, different maximal self-supported angles, αmax,

are used.

of FDM is proportional to the total materials usage, slimming

down the support will significantly improve the efficiency of

the fabrication as well. Note that this will benefit not only the

FDM printing with single material but also the advanced FDM

using dissolvable material in supports. The time of fabrication

in MIP-SLA depends on the number of total layers of a model.

Therefore, slimming down the support will not speed up the

MIP-SLA printing. However, another important aspect of MIP-

SLA benefited by this work is the surface quality of finished

model. The supporting structures and the main model are linked

by a few anchor points (AP). After removing the supports in a

post-process, in place of the APs some artifacts usually appear

(Fig.2). The number of APs on the optimized Dino is reduced

from 61 to 18, and the number of APs on the optimized Ar-

madillo model is reduced to 1/16 of the original input with 32

APs. Three more examples are shown in Fig.11.

We also study the performance and the convergency of the

shape optimization algorithm. The statistics about the compu-

tation of different models are given in Table 2, where the total

time of 100 iterations is reported. Note that the majority of the

time is spent on the local steps for computing SVD and mini-

mal rotation. The equation system of the global blending step

needs only to be factorized in the first step, and the factorization

can be reused in the subsequent steps where the substitution can

be computed very efficiently. To further investigate the conver-

gency of our shape optimization algorithm, we track the num-

ber of risky faces during the computation. As shown in Fig.12,

the number of risky faces keeps dropping in all the examples

(although this may not be monotonically).

It is obvious that having more vertices on the volumetric

mesh leads to longer computing time. On the other hand, a

volumetric mesh with too coarse a resolution will give a large

shape approximation error. Therefore, we usually employ a

mesh with less than 5k vertices, and this results in a good trade-

off between speed and quality.
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Figure 10: Example of support slimming on the Armadillo

model and the comparison of AM results before vs. after the

shape optimization in both MIP-SLA (bottom-left) and FDM

(bottom-right). The optimization ‘raises up’ the arms and ‘pulls

down’ the tail. In the pictures of MIP-SLA, the bottom row

shows the optimized result; in the pictures of FDM, the right

model has been optimized.

5.2. Extensions

Our optimization approach provides a basic tool for realizing

the more interesting applications. Two examples, (1) support

slimming with shape control and (2) searching for the optimal

printing direction, are presented in this section.

Shape Control in Optimization

In many cases, the designers may not wish to change the shape

of a model too much during the optimization for support slim-

ming. This can be realized by adding a penalty factor β, which

is an angle between 0◦ and 90◦. Specifically, Lt = R(r̂, θ′)M

is employed in the shape optimization as the transformation,

where

θ′ = max(θ − β, 0). (7)

As a result, when a large β is employed, many of the risky faces

will not be rotated (in the cases that θ determined by the local

minimal rotation is less than β). As shown in Fig.13, differ-

ent values of β result in different degrees of deformations in

the shape optimization for support slimming. In practice, the

penalty factor is used together with two metrics for shape devi-

ation:

• Maximal Node Deviation Ratio (MNDR): This metric

evaluates the maximal displacement at the vertices of the

input mesh model M with respect to the diagonal length

ofM’s bounding box.

Figure 12: A chart to show the percentage of risky faces com-

pared to the number of risky faces on the input models.

• Average Node Deviation Ratio (ANDR): This measures

the average displacement at all the vertices ofM with re-

spect to the diagonal length ofM’s bounding box.

We start from the optimization with β = 0 and evaluate the

MNDR and ANDR on the resultant model. If they are not satis-

fied, the value of β is incrementally changed until a result with

a satisfactory shape deviation is obtained. In practice, design-

ers usually require that ANDR is less than 5% or MNDR is less

than 15% to control the deformation. For the dinosaurus model

shown in Fig.13, the desirable β is less than 30◦.

Searching for Optimal Printing Direction

The printing direction is usually chosen empirically by users in

accordance with the features on an input model or simply as-

signed in the bottom-up direction. However, for some models

such as the running Armadillo model shown in Fig.14, it is not

easy to find a heuristic printing direction. Our approach can be

employed in the inner loop as a tool to search for an optimal

printing direction. Here the optimal printing direction is de-

fined as a direction that leads to the minimal number of anchor

points (APs) linking supports to the main model (ref. [2]). That

means we wish to introduce minimal damage during the post-

process to remove the supports. We iteratively rotate the input

model along the x- and y-axes with a constant angle. For each

new orientation, we apply the optimization approach followed

by the support generation algorithm, on the result of which the

number of APs is counted. Among all the discretely spanned

orientations, the one with the minimal AP is finally chosen as

an optimal printing direction (see Fig.14 for an example).

5.3. Limitation and Discussion

Although our approach can successfully optimize the shape

of given models to slim down the supporting structure, it also

has some limitations. First of all, our optimizer is based on the

assumption that the shape of the original model can be changed.

For some applications in which the original model cannot be

deformed, our optimizer is not able to help. Secondly, because

we set the goal of optimization only at slimming down the sup-

porting structure, the model cannot be converted into a fully

8



Figure 14: Our approach can be computed efficiently on freeform models. As a result, it can be used as a tool to compute the optimal

shape for each printing direction. The number of APs linking supports to the main model can be used as a criterion for selecting

the printing direction. Smaller AP leads to less surface damage when removing the supports in the post-process of printing. We

have used the MIP-SLA to print the original model and the model with optimal direction circled by the dashed lines – see the left

column of the fabricated models. Note that, in each orientation, optimization is also taken to further deform the model into an

optimal shape. This is different from what can be obtained by searching with rigid transformations.

self-supported shape. On the other aspect, self-supportiveness

usually needs to be considered at the very beginning of the de-

sign process. One of the related works can be found in [30].

Thirdly, our support slimming work does not consider the sur-

face damaged on the safe faces by adding supports for the risky

faces exactly above them. Lastly, the volumetric meshes which

are coarser than the input mesh models are used as the computa-

tional domain in our approach to preserve the geometric details.

On the downside, this also neglects the overhangs inside a safe

tetrahedron. We will consider these factors by investigating a

method for computing the minimal rotation in more complex

configurations. Specifically, multiple faces on the input mesh

M inside a tetrahedron will be employed to construct the DFR

on the Gauss sphere. We will study this in our future work.

The success of shape optimization on a coarser volumetric

mesh CT relies on the error between mesh surface of the given

model and the boundary of CT ; the smaller the better. When a

very coarse mesh is employed, the ‘optimized’ shape computed

from the volumetric mesh may have more risky faces before

computation. We prevent such cases by checking the number of

risky faces after each iteration, and always store the best result

among the past steps of iteration. How to generate a volumetric

mesh bounding the input model more tightly has beyond the

scope of this paper. We consider it to be a work which needs to

be taken in the future.

Because the computational domain of our optimization

framework is a coarse volumetric mesh, local/global self-

intersection may be introduced into the volumetric mesh.

A post-processing step needs to be applied to remove self-

intersections in such cases (e.g., [31]).

In our current formulation, one interior vertex (i.e., v4) is

chosen as the origin of local rotation based on a heuristic con-

sideration. The effectiveness of selecting different origins of

local rotation can be released by using the mean-subtraction

strategy in global blending (ref. [32]). However, in all of our

tests, the current implementation converges well when we use

one of the interior vertices as the origin of local rotation.

9



Figure 13: When different values of the penalty factor β are

employed in the shape optimization, results with different max-

imal node deviation ratio (MNDR) and average node deviation

ratio (ANDR) can be obtained. If less deformation is allowed

in the optimization, the resultant model may need to add more

supporting structures.

6. Conclusion

This paper presents a method for optimizing the shape of

a designed model to be fabricated by layer-based AM. When

only a single material can be used during the fabrication, two

widely used types of AM machines, FDM and SLA, both suffer

from the problems caused by the additionally inserted support-

ing structures. We develop an optimization approach based on

a local minimal rotation and a global blending. A closed-form

formulation is derived in the local step to determine the min-

imal rotations in different configurations. The computation of

global blending can be offloaded to a factorization of the normal

equation system that can be reused in the subsequent iterations.

As a result, the optimization can be conducted very efficiently.

Experimental tests shown at the end of the paper have verified

the effectiveness of this approach. The optimized models can

serve as useful references for designers when self-supportness

is an important factor to be considered.
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