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Figure 1: Our framework for generating deformation with enforced metrics provides a user-friendly tool for designers to

accurately control the metrics in a deformation while well preserving the shape of input models. This function is hard to be

realized by constrained deformation. Progressive deformation (by gradually increasing the constrained length by 1% in each

step) cannot generate results as good as ours. Moreover, the formulation of scale-driven deformation investigated in this work

can converge in a few iterations.

Abstract

Techniques have been developed to deform a mesh with multiple types of constraints. One limitation of prior

methods is that the accuracy of demanded metrics on the resultant model cannot be guaranteed. Adding metrics

directly as hard constraints to an optimization functional often leads to unexpected distortion when target metrics

differ significant from what are on the input model. In this paper, we present an effective framework to deform

mesh models by enforcing demanded metrics on length, area and volume. To approach target metrics stably and

minimize distortion, an iterative scale-driven deformation is investigated, and a global optimization functional

is exploited to balance the scaling effect at different parts of a model. Examples demonstrate that our approach

provides a user-friendly tool for designers who are used to semantic input.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction

Mesh deformation is an important technique in geomet-
ric modeling and processing and has many applications in
computer graphics. Effective and efficient deformation ap-
proaches are also demanded in engineering design of a va-
riety of industries. Given an input 3D model, users often

† Corresponding Author; E-mail: cwang@mae.cuhk.edu.hk

need to modify and deform the model according to different
scenarios of usage, i.e. different constraints will be added
to the model based on different application demands. Many
mesh deformation techniques use handles as input for de-
signers (e.g., [BK04,LSCO∗04,LSLCO05,VFTS06,BS08]).
Although it is flexible, the handles are hard to be controlled
to let the deformed model satisfying certain metrics (e.g.,
length, area and volume). The authors of [EP09] attempted
to tackle this problem by converting the metrics into dif-
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Figure 2: An illustration of work flow. The input mesh is prescribed with three length constraints. The model is gradually

deformed towards the user-specified values on the length constraints with the help of the scale-driven deformation (Section 2).

When the lengths are close to the demanded values, constrained shape optimization is applied to enhance the metrics finally

(Section 2.4). Different types of metrics, including length, area and volume (Section 3), can be enforced by our framework.

ferent linear/non-linear constraints to be integrated into the
functional of shape optimization. However, how to accu-
rately enforce the constraints of various metrics during de-
formation is still an open problem.

Constrained deformation is often formulated under the
framework of non-linear optimization. Prior approaches
convert constraints into a few terms of functional to be min-
imized. As discussed in [BS08], one has to choose a suf-
ficiently large weight for the soft constraints to obtain sat-
isfactory results, which unfortunately may lead to numeri-
cal problems. Using hard constraints to fulfill the demanded
metrics leads to the results with unexpected distortion. The
reason is as follows. In this case, the input model to be de-
formed does not present the demanded values on the met-
rics. Therefore, the initial guess of optimization actually
falls outside the feasible region defined by the hard con-
straints. Applying Lagrange multiplier directly on the con-
straints projects the initial guess onto a near point inside
the feasible region, which does not give an explicit con-
sideration of shape preservation (see Fig.1). This is differ-
ent from those volume-preserving deformation techniques
(e.g., [HML00, VFTS06, AB97, RSB96]), where the input
model has already been inside the feasible region. To keep a
deformed mesh being close to the feasible region, one may
consider the strategy of progressively strengthening the de-
mand on metrics. Ideally, when the instant shape is suffi-
ciently close to the feasible region, enforcing the demanded
metrics as hard constraints will give small distortion. How-
ever, a practical but tough problem is how small the change
of metrics will lead to a satisfactory deformation. Moreover,
this strategy of adding small changes of metrics converges
very slowly. In summary, the major difficulty for generat-
ing a deformation with enforced metrics is how to efficiently
and effectively obtain an initial guess to be further enhanced
by an optimization with hard constraints, which is tackled in
this paper.

1.1. Main Results

We solve the problem of metrics-enforced deformation with
a framework consisting of two phases (see the work flow
shown in Fig.2). In the first phase of deformation, a novel
scale-driven approach is investigated to deform the input
model towards the demanded values on different metrics, in-
cluding length, area and volume. Shape similarity of models
before and after deformation is well preserved. Our formu-
lation leads to fast convergency in the scale-driven deforma-
tion. The measurements of specified metrics on the deformed
model can be very close to the demanded values after a few
iterations. In the second phase of deformation, the metrics
on deformed models are further enforced in a constrained
optimization with demanded metrics as hard constraints. De-
manded metrics can be achieved with higher accuracy in our
deformation framework. The constraints on metrics can be
flexibly specified in a local or global manner according to
different applications.

In the conceptual aspect, the scale factors of triangles
define a configuration space and each constraint of length,
area and volume defines a hyper-surface in the configura-
tion space. Points on the intersection of these hyper-surfaces
give configurations which guarantee that all constraints are
satisfied. In the scale-driven step (i.e., the first phase of de-
formation), all triangles satisfy a conformal deformation as
they are considered independently. Since all the triangles
need to be blended together in the global step to generate
a new mesh, least distortion will happen when the difference
of two adjacent triangles’ scale-factors is minimized. This
idea motivates us to develop the scale-driven deformation in
this paper. In each step, we project the current status onto
the intersection of hyper-surfaces. After finding the optimal
point projected, we use it as the final configuration to drive
the blending process.

c© 2014 The Author(s)
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1.2. Related Work

In literature, there are a large amount of techniques for the
deformation and manipulation of mesh models. This review
does not aim for completeness, but provides an overview of
the scope of techniques that our work relates to.

Eigensatz et al. [ESP08] introduced a curvature-domain
shape processing framework that provides direct access to
surface curvature. Their subsequent work in [EP09] allows
direct manipulation or preservation of positional, metric, and
curvature constraints on the surface of a model. In this ap-
proach, the user-specified requirements on length, area and
position are converted into linear or non-linear constraints,
and a global optimization functional is employed to find the
deformed surface that best satisfies the constraints while pre-
serving the details of the original mesh as much as possi-
ble. However, it cannot accurately enforce the metrics on
the results of deformation. The work of spin transforma-
tions [CPS11] provides a framework for constructing confor-
mal deformations by specifying the densities of curvatures.
However, it is not clear how to further extend their work to
generate deformation results with accurate values on length,
area and volume. And our formulation on trying to preserve
the shape similarity during deformation is in a simpler form.
We consider our work as a conjunction of those approaches
providing curvature control. Wang et al. [WLT12] recon-
struct the vertex coordinates for a surface mesh from given
edge lengths and dihedral angles. Again, the function for ac-
curately controlling the metrics of length, area and volume is
not available in their framework. The similar problem exists
in other techniques trying to preserve the local shape during
deformation [PDK07, KG08].

Many deformation methods based on a local/global opti-
mization strategy have been proposed in literature. By build-
ing correspondence between the source and the target, Sum-
ner and Popović transferred the deformation of a source
mesh onto a different target mesh in [SP04]. The technique
is further extended to transfer garment design in [BSBC12].
Sorkine an Alexa tried to preserve the rigidity of local trans-
formations during deformation by a local/global approach
in [SA07]. Recently, Bouaziz et al. [BDS∗12] introduced
a method to generate constrained deformation by defining
a series of projection operators for different types of con-
straints and then minimizing a proximity function. Our ap-
proach decouples the deformation into two steps: 1) scale
factor optimization and 2) shape optimization. This is anal-
ogous to the local and global steps in above approaches.

In another thread of research, surface deformation algo-
rithms based on differential coordinates (ref. [SCOL∗04,
LSCO∗04, YZX∗04, LSLCO05]) focus on preserving or
editing the local properties and details during deforma-
tion. Users can manipulate the derived properties such as
mesh gradients or local coordinates and construct the de-
formed mesh by solving linear equation systems. Sheffer and
Kraevoy [SK04] captured the local shape of the mesh around

each vertex by building pyramid coordinates and maintain
the local details under various editing operations. In our
framework of deformation, the local shape is preserved by
adding a mean-curvature preservation term to work together
with the term for the rigidity of local frames.

Sketch and handle based deformation techniques have be-
come popular as they provide intuitive tools for mesh edit-
ing. The work of Nealen et al. [NISA07] allows users to draw
and modify control curves on the model as curve constraints
and finds the surface by an optimization process. Wire based
deformation methods (e.g., [SF98,GSMCO09]) exploit wire
curves to deform models. As wires provide a coarse geomet-
ric representation of an object, people can intuitively edit
a mesh by modifying the wire curves. An interactive de-
formation method in [VFTS06] deforms models with the
help of vector field. When the vector field is divergence-free,
the volume of a model is preserved during the deformation.
However, these approaches cannot provide complex metrics-
enhancement as ours.

The problem of unwanted distortion in constrained mesh
deformation is also tackled by Yang et al. in [YYPM11].
They formulate the constrained mesh deformation in high
dimensional spaces. The intersection of all hyperplanes de-
termined by the functions of constraints gives the surfaces
that satisfy the prescribed constraints. Then, the deformed
mesh can be found by adding fairness and other require-
ments of surface quality. Recently, the idea is further ex-
tended in [DBD∗13] to explore local modifications of con-
strained meshes. Although the framework of constrained
mesh deformation introduced in these approaches is general,
we dedicate to solve the mesh deformation problems that are
driven by user-specified metrics (i.e., length, area and vol-
ume) and solve this particular type of problems by a simpler
formulation.

1.3. Common Notations

An input model Ms is represented by a triangular mesh
Ms = (V;E ;F), where V = {vi}, E = {ei j} and F = { fi jk}
denote the sets of vertices, edges and faces respectively. The
position of a vertex vi is given by vi ∈ℜ3. For all constraints
in the set, C, they are classified into limited k categories: C1,
C2, . . ., Ck. Moreover, all values from the original model are
denoted with a superscript ‘o’ and those computed from cur-
rent status are represented with a superscript ‘c’.

2. Scale-Driven Deformation

To formulate the scale-driven deformation, we first introduce
how to construct local frames for an input mesh surface. Af-
ter that, a method is presented to estimate the optimal scale
factors for all local frames to approach the demanded values
on user-specified metrics. The estimated scale factors will be
used to drive the subsequent step of shape preserved defor-
mation. Iteratively applying these two steps of scale factor

c© 2014 The Author(s)
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Figure 3: The input model is deformed by specifying demand on different metrics, and the ideal results should be the same as

scaling the model by 2.0. The publicly available PolyMeCo [Sil08] is employed to analyze and visualize the geometric error

(w.r.t. the diagonal length of bounding box). Only very small shape approximation errors are generated on our results. In other

words, the shape of input model is well-preserved by our scale-driven deformation framework.

estimation and shape-preserved deformation can deform an
input mesh surface gradually to meet the requested values on
a variety of metrics.

2.1. Local Frame Structure

The requirement of shape preservation in mesh deformation
can be converted into keeping invariant normals on faces (or
invariant relative orientation between adjacent faces). How-
ever, a formulation with more stable computation is based
on constructing a local frame structure (ref. [SP04]). For a
triangle t with three vertices, v1, v2 and v3, the forth artifi-
cial vertex v4 is added by offsetting v1 along the face normal
as

v4 = v1 +
(v2−v1)×(v3−v2)√
‖(v2−v1)×(v3−v2)‖

.

With the help of this artificial vertex, a local frame tensor
can be constructed as [v2 − v1,v3 − v1,v4 − v1]. This for-
mulation integrates the shape and the orientation of triangles
into a single formula. Thus, the shape preservation can be
realized by the conservation of local frames.

To provide flexibility, we add a scale factor s to every local
frame. Specifically, the local frame tensor of a triangle face
can be represented as

V = [s(v2 −v1),s(v3 −v1),s(v4 −v1)]. (1)

With the help of this tensor, our deformation framework can
promptly approach user-specified values on different metrics
while preserving the shape of an input model (see Fig.3).

2.2. Scale Factor Estimation

In the step of scale factor estimation, we attempt to find the
best values of the scale factors to fit the demanded metrics. It
is assumed that all constraints can be expressed as functions

Figure 4: Estimation of scale factors: (left) the input with

demands on multiple metrics, (middle) shape obtained af-

ter a few iterations of scale-driven deformation, and (right)

distribution of estimated scale factors.

of scale factors (e.g., Ci(s1,s2, · · · ,sn) with n being the num-
ber of triangles on an input model). The formulations of the
metrics-based constraints in the form of scale factors will be
detailed in Section 3.

To achieve the goal of shape preservation, the difference
of scale factors on two adjacent faces should be minimized.
Meanwhile, the metrics-based constraints must be satisfied.
This can be formulated as

min
s1,s2,··· ,sn

∑
(i, j)∈Q

(si − s j)
2

s.t. Ci = 0, i = 1, · · · ,k.
(2)

where Q is the set of pairs of adjacent faces. However, the
Hessian matrix of this formulation is not full rank. A regu-

c© 2014 The Author(s)
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larization term is added to resolve this problem.

min
s1,s2,··· ,sn

kd ∑
(i, j)∈Q

(si − s j)
2 + kr

n

∑
i=1

(si −1)2

s.t. Ci = 0, i = 1, · · · ,k.
(3)

with kd = 1.0 and kr = 0.01. The scale factors on triangles
can then be determined by using Newton’s approach. Fig-
ure 4 shows the scale factors determined by this estimation
method when different demanded metrics are specified.

2.3. Shape Preservation

After determining the optimal scale factors on all triangu-
lar faces, we need to change the positions of vertices to
let a model deformed according to the scale factors. One
has to notice that the shapes of neighboring triangles may
not be compatible with each other when they are scaled ex-
actly according to the scale factors. The frames on two faces
are compatible only when their scale factors are exactly the
same. Thus we should find a global balance to the configura-
tion of scale factors while preserving local frames as much
as possible.

Considering a local frame tensor V and its variant V′, an
affine transformation matrix is defined as V′V−1 to evalu-
ate the difference between its two states (V and V′) in ig-
norance of translation. The deformation transfer framework
in [SP04] employs an optimization to let this affine transfor-
mation be close to a target transformation, T, by minimizing
the energy, ∑‖V′V−1 −T‖2

F . Here, in our formulation, the
new local frame should be close to the scaled old one (with
the scale factor, s, determined in the above step). Therefore,
we conduct the following frame-based energy functional for
shape optimization

E f =
n

∑
i=1

wi‖Vi − siV
c
i ‖2

F , (4)

where Vi is the i-th unknown new frame, Vc
i is the cur-

rent i-th frame, and ‖· · ·‖F is the Frobenius norm for matri-
ces. This functional actually minimizes an energy similar to
∑‖V′V−1 − sI‖2

F . For a triangular mesh surface, the weight
wi is chosen as Ao

i /∑i Ao
i (with Ao

i being the area of i-th tri-
angle before deformation) to balance the effect of triangles
with different areas.

The frame-based term does not place constraints on re-
maining the distribution of triangles in the local span of a
vertex, therefore only using the frame-based term cannot
preserve the local smoothness of a deformed model (see the
upper-right of Fig.5). An additional mean curvature based
energy [MDSB02] is added for this purpose.

Em = ∑
i∈V

‖ ∑
j∈N (i)

ωi j

(

(vi −v j)− (vc
i −v

c
j)
)

‖2, (5)

where N (i) denotes the 1-ring neighbor vertices of vi and
ωi js are the cotangent weights computed from the input

Figure 5: Different deformation results by different combi-

nation of weights: k f , km and kl . Note that, k f = 1000.0 is

used in all tests.

mesh. However, this energy is not strong enough to control
the relative orientation between neighboring local frames. A
regularization term based on mean value Laplacian [Flo03]
is added. For a vertex, vi, its mean value Laplacian, L(vi),
is expected to be invariant with the one on the current po-
sition, L(vc

i ). However, as Laplacian is scale-dependent, we
formulate a term preserving the direction (but not the value)
of Laplacian, which is

El = ∑
i∈V

‖L(vi)×L(vc
i )‖2. (6)

By integrating all the energy terms, the shape optimization
is formulated as

min
v1,v2,··· ,vm

k f E f + kmEm + klEl . (7)

Generally, the weights are set as k f = 1000.0 and km = kl =
1.0 to balance the contribution of different terms. The results
of applying different combinations on the values of k f , km

and kl are illustrated in Fig.5.

2.4. Iterative Deformation and Metrics Enforcement

Applying only one step of scale factor estimation followed
by another step of shape optimization cannot obtain a satis-
factory result when multiple metrics are demanded. An iter-
ative process is needed to repeatedly apply these two steps
to let the deformation converge to demanded values on those
user-specified metrics. In each iteration, we first estimate the

c© 2014 The Author(s)
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optimal scale factors on the current mesh. Then, local frames
are constructed on the current mesh and the shape optimiza-
tion step is applied to deform the mesh surface. The iteration
is terminated when the maximal change of scale factors on
triangular faces is less than a threshold (e.g., 0.05).

Finally, the mesh surface is fine-tuned to enforce the met-
rics (formulated as hard constraints, Fi) by

min
v1,v2,··· ,vm

k f E f + kmEm + klEl

s.t. Fi = 0, for i = 1, · · · ,k.
(8)

which can be solved by using Newton’s approach. As the
Newton’s approach may lead to high distortion (ref. [BS08]),
we emphasize the terms of shape smoothness in this fine-
tuning step – i.e., k f , kl and km are set to 1, 100 and 100.
As the objective functions defined in Eqs.(3), (7) and (8) all
have the quadratic form, the numerical computation is stable
and converges very fast. The minimization of Eq.(8) finally
yields a shape-preserved model that satisfies all hard con-
straints.

3. Constraints for Metrics

In this section, we formulate the constraints of Length, Area,
and Volume to fit our optimization framework.

3.1. Length Constraint

The demand on length is allowed to be specified on curves
in our framework. We represent a curve on the mesh sur-
face as a set of connected line segments and each segment
belongs to a triangular face. The line segment in a triangle
can be uniquely defined by two characteristic nodes, the po-
sitions of which are encoded with the triangle’s vertices by
the barycentric coordinates. While fixing the barycentric co-
ordinates, line segments can be deformed together with the
mesh surface. As a result, the length of a line segment can be
evaluated by the positions of its characteristic nodes, which
are linear combination of mesh vertices.

In the step of scale factor estimation, the length of one
segment can be expressed by its current length on a face
and its corresponding scale factor. Therefore, we define
the length of a curve on the mesh surface Ms as LL =

∑i∈FL
sil

c
i , where lc

i indicates the current length of i-th line
segment on the curve L and FL is the index set of trian-
gles containing the line segments of L. Therefore, the length
constraint for the step of scale factor estimation is defined as

Clength = ∑
L

[

1

L̂target

(

∑
i∈FL

sil
c
i

)

−1

]2

(9)

with L̂target being the target length of the curve L. While
in the fine-tuning step of the shape optimization, the hard

constraints for length enforcement become

Flength = ∑
L

[

1

L̂target

(

∑
i∈FL

li

)

−1

]2

. (10)

Note that, in this formulation, li is represented by the linear
combination of the positions of mesh vertices with the help
of barycentric coordinates.

3.2. Area Constraint

The area of a region P on the input mesh Ms is the total
area of triangles fall in this region. Users can define several
such regions on Ms and specify the target values of their
area to drive a deformation (see Figs.4 and 6 for examples).
The constraint for areas in the step of scale factor estimation
is defined as

Carea = ∑
P

[

1

Âtarget

(

∑
f∈FP

s
2
f a

c
f

)

−1

]2

(11)

in terms of the scale factors, s f , to be determined. In this
formulation, ac

f is the current area of a face f and FP is the
set of triangles in a user-specified region, P .

When taking the fine-tuning shape optimization, the hard
constraint on regions with demanded areas is defined as

Farea = ∑
P

[

1

Âtarget

(

∑
f∈FP

a f

)

−1

]2

, (12)

where the area a f of triangle f is 1
2‖(v

f
2 −v

f
1)× (v

f
3 −v

f
1)‖

in terms of its three vertices v
f
1 , v

f
2 and v

f
3 .

3.3. Volume Constraint

The volume of a surface mesh can be represented as the sum
of signed volume of virtual tetrahedrons. The virtual tetrahe-
dron t for a triangle face f (with vertices v

f
1 , v

f
2 and v

f
3 ) can

be constructed by introducing origin as the fourth vertex, so
that its volume is vt =

1
6 v

f
1 · ((v

f
2 −v

f
1)× (v

f
3 −v

f
2)).

When estimating the scale factors, the scaled volume of
a virtual tetrahedron t is s3

t vt . Again, the constraint used in
generating optimal shape factors is

Cvolume = ∑
V

[

1

V̂target

(

∑
t∈FV

s
3
t v

c
t

)

−1

]2

(13)

with vc
t being the current volume of a virtual tetrahedron t

and FV being the set of constrained tetrahedra.

In the fine-tuning step to enforce constraint on volume,
the constraint is formulated as

Fvolume = ∑
V

[

1

V̂target

(

∑
t∈FV

vt

)

−1

]2

(14)

again in terms of mesh vertices.

c© 2014 The Author(s)
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Figure 6: The starfish is deformed with two area constraints

while the volume is preserved.

Global volume preservation is one of most common re-
quirements in model design (see Fig.6 for an example). Af-
ter a simple extension, our formulation can deal with both
global and local volume constraints. To add local volume
constraints, we only need to take an additional tessellation
as a preprocessing step to make a locally closed volume.

4. Details of Numerical Scheme

The deformation framework proposed in this paper can be
implemented by solving three optimization problems. The
shape optimization step (Eq.(7)) is a least-square problem
that can be efficiently solved. The steps of shape factor esti-
mation (Eq.(3)) and fine-tuning (Eq.(8)) are formulated as
constrained optimization, which is converted into an aug-
mented objective function with Lagrange multiplier as

J(x,λ) = E(x)+∑i λiCi(x).

The augmented objective function can be solved by using
Newton’s approach [MNT04]. The constraints are classified
into k categories with k Lagrange multipliers λ1,λ2, · · · ,λk,
where the constraints in the same type are grouped into
the same category. Specifically, we have three categories –
length, area and volume. The reason why we classify the
constraints rather than combine all constraints together is
that different types of constraints have different speed of
convergence in terms of scale factors (i.e., linear, quadratic
and cubic orders). The Lagrange multipliers λ1,λ2, · · · ,λk

determined in every iteration step automatically adjust the
weights for each type of constraints. This formulation helps
avoid the interference among the different types of con-
straints and significantly improves the convergence speed of
computation.

Motivated by [SLMB05], we can further simplify the
computational complexity by the sequential linearly con-
strained programming. Specifically, the second order deriva-
tives of the constraints in the Hessian matrix ∇2J are ne-
glected. The linear system to be solved in each step of the
iteration can be expressed as

[

H LT

L 0

][

δx

δλ

]

=

[

bx

bλ

]

, (15)

where H = ∇2E(x) is the Hessian matrix of E(x) and L =
∂

∂λ
∇C(x). The vectors on the right-hand side are

bx =−∇E(x)−∑i λi∇Ci(x) and bλ = {−Ci(x)}.

The linear system in Eq.(15) can be further converted into

δx +H
−1

L
T

δλ = H
−1

bx (16)

Lδx = bλ. (17)

Then, the value of δλ can be first determined by eliminating
the above two equations to

LH
−1

L
T

δλ = LH
−1

bx −bλ. (18)

After solving Eq.(18), the unknown δx can be obtained by
substituting the value of δλ into Eq.(16). During the compu-
tation, we need to calculate H−1bx and H−1LT , which can
be obtained by solving

Hy = bx and HY = LT ,

where y is a vector with size(x) components and Y is a
size(x)× k matrix. As a result, H−1bx = y, H−1LT = Y,
and Eq.(18) becomes

LYδλ = Ly−bλ.

When k = 1, the value of δλ can be directly determined. For
cases with multiple types of constraints (i.e., k ≥ 2), Singu-

lar Value Decomposition (SVD) is applied to improve the
robustness of solving the unknowns, δλ.

In our scale-driven deformation, the Hessian matrices H

of objective functions in Eqs.(3) and (8) are fixed during
the iterations of solving constrained optimization. There-
fore, we factorize H into two triangular matrices by the LU-
decomposition [LDG], then all systems of linear equations
using H as coefficient matrix can be solved by applying two
back substitutions of the lower and upper triangular matri-
ces [PTVF95]. In summary, the LU-decomposition of Hes-
sian matrix H is taken only once during the iterations of
solving constrained optimization. All the rest computation is
based on back-substitution and matrix multiplication, which
can be efficiently performed. To guarantee the convergence
of hard constraints, we also apply a linear search scored by
the squared sum of constraints as (∑i λiCi(x))

2 to determine
an optimal updating scale after solving δx in each iteration
of the Newton’s approach.

5. Results

5.1. Validation and Comparison

We have tried our scale-driven deformation on a variety of
models using different combinations of metrics as input. The
results are encouraging. Figures 1 and 2 show the deforma-
tion driven by demanded lengths on user-specified curves.
For the deformations with single enforced metric, the shape-
approximation errors between the results generated by our
approach and the ground truth have been analyzed in Fig.3.
Our approach can produce very accurate conformal defor-
mation. When applying multiple demanded metrics as input
(e.g., the starfish example shown in Fig.6), our framework

c© 2014 The Author(s)
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Figure 7: Volume preserved manipulation of the Moai model

with multiple requests on length and area.

Figure 8: Volume preserved deformation is applied to the

dragon model with multiple requests on length and area.

can automatically compromise among the different types
of metrics. Three examples with more complex shape are
shown in Figs.7, 8 and 9. The geometry details and sharp
features are well-preserved by our approach.

Measurements are taken on resultant models to check
whether the demanded values have been achieved on the
user-specified metrics. Statistics are listed in Table 1. Ben-
efited by the new formulation of scale-driven deformation,
metrics are well enforced in our framework – all examples
show less than 1% of error on different types of metrics.
Our implementation of [EP09] cannot generate results with
such strictly preserved metrics – see the comparison shown
in Fig.10. When assigning demanded metrics as hard con-
straints, highly distorted models are generated. Progressively
changing the values on demanded metrics can somewhat
reduce the distortion. However, deformations generated by
conducting this strategy still cannot produce results as good
as ours after taking a time-consuming procedure of progres-
sive enforcement. A case study has been shown in Fig.1.

Another comparison is taken by trying to realize the func-
tions offered in this paper under the framework of Shape-Up
[BDS∗12], which is a local/global approach for constrained
geometry processing. For the example shown in Fig.11, we
can obtain the local shape of every triangle by scaling if it
belongs to the selected top region (i.e., the blue ones). For
those triangles not falling in the blue region, their current
shape is used as the local shape. Then, the global blending
will assemble all the local shape of triangles into a global
shape of the mesh surface. The result of Shape-Up is as
shown in Fig.11(d). Compared with our result (Fig.11(c)),

Figure 9: Area of the fandisk model at the bottom is fixed

while the area on the top is increased by 50%, 100% and

150% respectively. Sharp features are well preserved on the

deformation results.

Table 1: Statistics of Metrics on Resultant Models

Model Starfish (Fig.6)
Metrics Original Target Result Error (%)

Area 55.45 499.08 499.08 0.001
Area 107.75 107.75 107.76 0.009

Model Moai (Fig.7)
Metrics Original Target Result Error (%)
Length 14.23 14.23 14.31 0.56
Length 2.56 3.83 3.82 0.26
Length 2.35 3.52 3.51 0.34
Area 5.83 5.82 5.82 0.03
Area 2.26 9.05 9.02 0.27

Volume 117.99 117.99 118.72 0.62

Model Dragon (Fig.8)
Type Original Target Result Error (%)
Area 1829.79 457.44 457.42 0.005

Length 113.99 91.19 91.28 0.095
Length 106.53 117.18 117.01 0.149
Volume 154,328 154,328 154,418 0.058

their approach generates a result with worse surface quality.
Moreover, it is too restrictive to scale each triangle by

√
2

while the metric is only specified as making the total area of
these triangles double. More seriously, it will have difficulty
to process intersected demands on metrics (e.g., the exam-
ple shown at the bottom of Fig.4 and even more complex
combination of multiple types of metrics).

5.2. Position and Curvature Control

Position handles can be added into our deformation frame-
work to work together with the demanded metrics. Specifi-
cally, Eq.(7) is modified into the following form

min
v1,v2,··· ,vm

k f E f + kmEm + klEl + kpEp. (19)

by adding a positional term

Ep = ∑vp∈P ‖vp −vt
p‖2

c© 2014 The Author(s)
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Figure 10: Comparison with the results generated by our

implementation of [EP09].

Figure 11: Comparison with Shape-Up [BDS∗12]: our ap-

proach has a better shape preservation (c) and the result of

Shape-Up in (d) has irregularly distorted sharp-edges.

with vp ∈ P being a vertex in the set of positional han-
dles P and vt

p being the target position of vp. The weight,
kp = 1000.0, is used in our experimental tests. Similarly, the
positional term Ep is also added into Eq.(8) for the same
purpose as

min
v1,v2,··· ,vm

k f E f + kmEm + klEl + kpEp

s.t. Fi = 0, for i = 1, · · · ,k.
(20)

As a consequence, users can control the deformation by us-
ing positional handles together with demanded metrics. An
example is shown in Fig.12.

Moreover, we can also incorporate the curvature control
into our scale-driven deformation framework. The relative
value of mean curvature can be controlled by scaling the tar-
get vectors in Eq.(5) as follows:

Em = ∑
i∈V

‖ ∑
j∈N (i)

ωi j

(

(vi −v j)− ci(v
c
i −v

c
j)
)

‖2, (21)

where the scaling factor ci is used to control the change of
mean curvature vectors during the deformation. Although
this is not a precise control, designers can still use this to
somewhat control the shape of deformation by the relative
change on curvatures – see an example in Fig.13. In fact,

Figure 12: Positional handles can be added into our frame-

work of scale-driven deformation.

Figure 13: Designers can use scaling factors on curvature to

control the shape in our framework: (a) an input model, (b)

scaling mean curvature with factor ×2.0, and (c) inversely

scaling the curvature by ×0.1.

for industrial designers it is also hard to ask them to input
quantitative requirements on curvatures.

5.3. Application

The technique developed in this paper provides a very user-
friendly interface for the applications in design. Users can
easily use sketches to draw curves and select regions to spec-
ify demanded metrics on lengths and areas. For example, the
Moai model shown in Fig.7 can be easily deformed to its in-
flated version. More operations on designing a model with
the help of user-specified metrics can be found in Fig.14,
where a curve is specified on the nose and two ears are se-
lected as regions with demanded areas in design.

The second application shown here comes from an indus-
trial project of producing personalized wetsuit that can gen-

Figure 14: Application on the design by metrics: A head

model can be deformed to different variations with different

demanded metrics as input.
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Figure 15: Application on the design of compression wetsuit: Different demanded compression ratios (in terms of length vari-

ation on the feature curves) are specified according to the study of ergonomics. After deforming the human model by our

framework according to the input length requirements, a new model with deformed wetsuit can be obtained to generate 2D

patterns for compression. Patterns generated from a deformed human body is shown on the right.

Figure 16: Contradiction between demanded metrics: progressively increasing the demanded volume while preserving the

original surface area can lead to a contradiction. As a result, the accuracy on demanded metrics drops significantly. Note that,

by theoretically analyzing the area and volume of a sphere, the maximal volume with fixed area can be achieved in this example

is 2.202× of the original volume.

erate certain compression on the human body when wear-
ing the wetsuit (see Fig.15). With the help of advanced
geometric modeling technique, a personalized wetsuit can
be fabricated by 1) cutting the scanned 3D human models
into smaller pieces according to the styling curves (e.g., by
[LLP05]) and 2) flattening the 3D pieces into 2D patterns for
the fabrication (e.g., by [LZX∗08]). The new development
in this industrial application requests generating controlled
compression onto the surface of human body. The level of
compression is controlled by the percentage of stretch on
feature curves, which can be realized by our deformation
framework (see the right of Fig.15). Then, the patterns of
compression wetsuit can be obtained by flattening the 3D
mesh pieces generated from the deformed human body.

5.4. Discussion

Although the scale-driven deformation framework proposed
in this paper can successfully handle the input with demand
on different types of metrics which may intersect, the de-
manded metrics will have large errors when the metrics are
specified in the way leading to contradiction. For example,

when fixing the surface area while increasing its volume
tremendously till the volume to area ratio is even greater than
a sphere, there exits no solution in reality. The optimization
framework will automatically sacrifices the accuracy on de-
manded metrics to generate a model which can be presented
in the Euclidean space (see Fig.16 for an example).

Scale-aware deformation is relevant to the conformality
of surfaces. Eq.(3) is formulated to minimize the difference
of scaling factors between neighboring faces, which is sim-
ilar to the requirement on the conformality of deformation.
However, in the global step for reconstructing positions of
vertices, our formulation tends to preserve the geometric
details. Crane et al. proposed an approach in [CPS11] to
preserve the conformality of surfaces during deformation.
We compare our result with the deformation generated by
[CPS11] in Fig.17. The quasi-conformal error on each face
is generated by the ratio of the largest to smallest singular
values of Jacobian (details can be found in [SSGH01]). The
ideal error is 1.0, which means only uniform scaling and ro-
tation happen. It can be found that preserving the geometric
details during deformation is different from the preservation

c© 2014 The Author(s)
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Figure 17: The difference between our approach and

[CPS11]: (a) an input model, (b) the result of our ap-

proach, (c) the result of deformation generated by the tools

of [CPS11]. Unlike [CPS11] that generates a conformal

deformation, our formulation tends to preserve the local

geometric details. The color map and the histogram of

quasi-conformal error can be generated by the method of

[SSGH01], where an error of 1.0 in each face is ideal.

of conformality. One of our future work is how to realize
accurate control of metrics in conformal deformations.

There are two major limitations of our framework. First,
the constraint energy in Eq.(3) must be a function of scale
factors. Thus the constraints which could not be expressed
by scale factors are currently not compatible with our frame-
work (e.g. curvature and angle). This can be one of our future
work to improve the compatibility of this framework. Sec-
ond, as the barycentric coordinate is employed to encode the
shape of a curve with the vertices on mesh surfaces, curves
on deformed models can be highly distorted when the qual-
ity of mesh is very poor. The problem can be resolved if the
curves coincident with triangular edges. Therefore, a prepro-
cessing step of remeshing is needed when the input meshes
have a lot of triangles in the ‘needle’ or ‘cap’ shape.

As the techniques of non-linear optimization are em-
ployed to formulate the deformation framework, the com-
puting cost of this approach is much higher than the linear
deformation techniques (ref. [BS08]) even after taking the
pre-factorization step proposed in Section 4. For a model
with around 10k faces, our approach takes 30 ∼ 100 sec-
onds on a 2.83GHz Intel Xeon E5440 Dual Core with 4GB
of memory. In practice, the time cost depends on the con-
figuration of demanded metrics. Generally, the computation
converges faster with no intersection between metrics, and
takes longer time when they intersect. The relatively slow
speed in computation is actually caused by setting the maxi-
mum iteration step in each optimization to 500 to get precise
results. As a matter of fact, the optimization energies defined

in our framework drop significantly in the first few steps –
thanks to their quadratic forms. Based on this, the perfor-
mance of our approach can be improved in a tricky way. Be-
sides computing the finally converged results, we can gener-
ate a ‘preview’ of deformation by applying a fewer steps of
iteration. For example, when applying 5 steps of iteration in
all our experiments, the results of such ‘preview’ can be gen-
erated in a speed as follows. For models with 5k faces, the
computation time is < 1 second. For models with 10k faces,
the time is less than 2 seconds; and models with 50k faces,
it takes less than 5 seconds. We notice that even when only
5 steps are applied, the errors of constraints on demanded
metrics will commonly drop to less than 10% (see the model
shown in Fig.2 as an example).

6. Conclusion

We present a scale-driven deformation framework in this pa-
per to provide a tool for deforming 3D models by metrics.
The energy functional are defined with simplicity, numerical
stability and computational efficiency. As a result, demanded
metrics on length, area and volume can be easily achieved.
Experimental tests show that deforming a mesh with single
or multiple metrics-based hard constraints under our frame-
work can obtain high accuracy. In summary, our approach
provides an effective and efficient deformation tool for a va-
riety of applications in industry.
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